
Proceedings of the Ninth International Space Syntax Symposium
Edited by Y O Kim, H T Park and K W Seo, Seoul: Sejong University, 2013

SPOT WITH PATHS, AND INTERACTIVE DIAGRAM WITH A
LOW COMPLEXITY ISOVIST ALGORITHM

062 Pablo Miranda Carranza
KTH/ e-mail: pablo.miranda@arch.kth.se

 Daniel Koch
KTH/ e-mail: daniel.koch@arch.kth.se

 Asmund Izaki
Aedas R&D/ e-mail: Asmund.Izaki@aedas.com

Abstract

In an often quoted sentence of his 1976 book “The Architecture of Form”, Lionel March drew a
clear distinction between science, interested in extant forms, and design, which initiates novel
forms. The theories, methods, measures and diagrams of space syntax have often developed
following this first more scientific scheme, and they have been concerned with the analysis of
existing or projected buildings and cities. This emphasis on analysis is evident in current software,
algorithms and measures. But is it possible to think of a space syntax not only as a way of
analysing existing situations or validating future designs, but as a form of actually generating
architecture?
In our work we have used space syntax at the early stages of the design process, not so much as
a form of analysis, but as a sort of architectural diagram. The shift of space syntax into a
generative role has demanded a set of conceptual and technical adjustments: from the emphasis
on graphic language and visualisation to the need for fast feedback and interaction.

In this paper we present an example from our work, and the framework (technical and
methodological) necessary to produce it. The digital diagram we have created deals with the
design of a new hospital ward. It represents some basic problems we have encountered in the
relation of patients, staff and architecture, which are incorporated into the software through 3
basic interactive entities: isovists (from patients positions), the circulation paths of hospital staff
(with a calculation of their visibility relations to the patients), and the arrangement of walls to
form rooms. All these 3 entity types are interdependent: isovists depend of walls and positions
and the visualisation of staff paths depends on the patients isovists. They are also editable in
real time, that is, walls, isovists and paths can be added, deleted, or moved, and the effects of
any of these actions visualised at once.

This fast interaction and feedback require efficient algorithms and data structures. In particular
we have implemented an algorithm for the calculation of isovists or visibility polygons with a
complexity dependent of the size (in terms of visible vertices) of the visibility polygon, rather
than being a function of the size of the boundary. This allow us to calculate visibility polygons in
real time irrespective of the size of the boundary, may this be a building or a whole city. Our
method implements an idea by Asmund Izaki for the calculation of isovists and visibility graphs,
based in the use of an underlying triangulation data structure for the search of all visible vertices
from a point. Besides the general interest of our approach to the use of space syntax in a
generative rather than in an analytical way, we believe that the algorithms for the calculation of
visibility polygons or isovists can find application also into existing space syntax software,
improving its performance, and in some cases opening the possibility for an extension of its role
from forms of analysis to generative ones.

Our software has been developed using the C++ programming language, and it makes extensive
use of Open Source libraries such as CGAL, Dime, Qt and Boost.

Keywords: Isovists, Low complexity, Interactive Software, Algorithm, Design Application

Theme: Modelling and Methodology Developments

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 2

1. Introduction

In an often quoted sentence, Lionel March drew a distinction between science, interested in
extant forms, and design, which initiates novel forms (March 1976). The theories, methods,
measures and diagrams of space syntax have often developed following this first more scientific
scheme, and they have been concerned with the analysis of existing or projected buildings and
cities.This emphasis on analysis is evident in current software, algorithms and measures. In our
work we have considered instead the use of space syntax at the early stages of the design
process, not so much as a form of analysis, but as a sort of architectural diagram. The shift of
space syntax into a more generative role demands a set of conceptual and technical
adjustments, including an emphasis on graphic language and visualisation and the necessity of
fast feedback and interaction. At the same time, the implementation of these adjustments
requires efficient algorithms and data structures in a larger measure than the analytical
approach.

In this paper we present an example from our work, and the technical and methodological
framework necessary to produce it. We like to think of our approach as digital diagramming; we
develop a set of useful algorithms and visualisation techniques that are assembled into small
computer applications, specific to a problem or project. This modular approach to the
production of software allow us to test and refine these reusable components, and to provide
custom made, simple applications for a design or problem.

The digital diagram we present here deals with the re-design of a hospital ward. A central role in
this example is played by polygonal isovists, defining visibility relations within the ward. These
isovists need to be draggable and react to changes to the geometry of the plan in real-time. We
have consequently implemented an algorithm for their calculation that depends of the
complexity of the isovists, rather than being a function of the boundaries of objects, in our case
the number of walls in the building. This allow us to calculate isovists in real time irrespective of
the number of the visibility obstacles, may this be the amount of walls in a single building, or
those of all buildings in a whole city. Our method implements some techniques proposed by
Åsmund Izaki (Izaki and Derix 2013) for the calculation of isovists and visibility graphs, based on
the use of an underlying triangulation to reduce the complexity of the calculations.

2. Differences between analysis and design software.

There is a clear distinction between a general analysis tool and a design tool; while analysis will
have as its goal generalisation, that is, to treat a number of different situations similarly in order
to draw general conclusions, or in order to compare an specific case with the inferences drawn
from previous analyses, a design tool needs often to reflect the distinct requirements and
contingencies of a design brief. Rather than a few general methods that can be used in most
circumstances, design projects require approaches that provides specific responses to a design
brief or architectural intention: instead of generalisation design requires specialisation. A way to
solve the contrasting goals of having general, relevant and well grounded principles, and of
being able to use them to answer to specific requirements, is to create generic methods and
techniques that can be adapted and assembled to give individualised responses to the particular
demands and constrains of architectural projects.

Another important difference between analysis and design tools is in the way these can interact
with the design process and its different cycles. Analysis can only be performed on existing
proposals; one needs to tentatively design first and then subject the results to analysis in order
to validate them. This is not only the case with Space Syntax, but the general case for much of
environmental and structural analysis as it is employed in architectural design. Usually such a

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 3

process does not necessary require fast feedback; most design decisions have been made at the
time the analysis is done, and it is only necessary to adjust the proposal.

But if some of the core concerns of Space Syntax representation and measures such as
accessibility, visibility or configuration are considered central to a design, then it would be a
great advantage to include them as the subject of the ideation process, and to have forms of
shaping these qualities directly, rather than by guessing first and validating later. Thus real-time
interaction can play an important role in making Space Syntax an integral part of the design
process, rather than a measure of its success or failure. At the same time, the implementation of
interactive tools requires to address problems of performance and computational complexity.

3. An example: Designing visibility in a hospital ward.

We present an example of an application of these principles in a design context. Mainly carried
out as part of a research project named “To see and be seen in health-care environments: user
oriented design for visibility and cooperation in spatial systems for health care”, this application
has also developed in close relation to a different study of security in buildings. Both projects
share a concern about visibility in spatial systems, though clearly of a very different kind, and
illustrate how a technique, in the form of algorithms and their implementation in computer
code, can become a component that can be reassembled in response to different design
problems.

The intentions behind the interactive software was to be able to test simple relations between
the configuration of space and its use, particularly the visibility, accessibility and contact
between hospital staff and patients. These intentions were translated into 3 basic graphical and
software components: first, an schematic drawing of the layout of the ward, editable by
removing, adding or modifying walls; second, a collection of isovists, representing the location
of patients and the visibility affordances and exposure of those locations; and third, a diagram
of the circulation paths of hospital staff and the visibility relations of these paths with patients’
locations, which is calculated and displayed as the number of isovists overlapping different
segment of the path. Walls, isovists and paths can be added and deleted, and their effect on
each other visualised in real time. (Figure 1).

Figure 1: Screenshot of the application with its 3 components: the editable schematic of the plan, the isovists
positions and the paths, showing their exposure to the isovists.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 4

All these 3 components, that is, layout diagram, isovists and paths, are interrelated in their
software implementations: changes in the layout affect the isovists, and changes in the isovists
affect the visibility of paths. The relation between isovists and the layout diagram is particularly
relevant and potentially useful in other contexts. It also exemplifies how aspects of performance
are central to the development of interactive applications and the need to study the
computational complexity of the analysis and visualisation methods used. Thus, we will dedicate
the rest of the paper to explain our method for efficiently calculating isovists, and their
interaction with an editable representation of the spatial layout of a building.

Our interest on isovists comes from previous developments of tools that deal with polygonal
isovists and visibility graphs (Markhede, et al. 2010, Miranda Carranza, et al. 2008). Isovists need
little explanation within the context of Space Syntax; the concept of the Isovist was first
proposed by Tandy(Tandy 1967) in the context of landscape analysis, and introduced to an
architectural setting by Benedikt(Benedikt 1979), who in his paper also proposed a number of
measures and properties of isovists relevant to architecture. Another fundamental contribution
to the use of isovists is the work of Turner, Doxa, O’Sullivan and Penn, in which they proposed
the use of “visibility graphs” (Turner, et al. 2001), a type of diagram and associated measures
that has become standard in Space Syntax analysis. Geometrically, algorithmically and as forms
of analysis, these different implementations of the concept of isovist are however quite
different: while Benedikt‘s isovists define a precise polygonal region, Turner, Doxa, O’Sullivan
and Penn’s isovist consists of visibility relations within a lattice. Turner et al. are more interested
in the analysis of these visibility relations and their structure, and thus their representation
differs substantially from Benedikt’s. We are concerned in our work with a description of the
isovists in Benedikt’s terms. However the method we propose could be easily be adapted to
calculate the type of visibility relations involved in Turner et al’s visibility graphs. In fact much
the basis of our algorithm rests on techniques from the field of computational geometry that
deal with visibility relations and queries, which could substantially speed-up the calculation of
visibility graphs.

4. Fast calculation of interactive isovists.

4.1 Some definitions.

While isovist play an important role in Space Syntax, the concept of isovist is not exclusive to
this domain. In general visibility problems are central to the field of computational geometry,
which is concern with the description and analysis of algorithms that can be stated in terms of
geometry (Preparata and Shamos 1985). In the context of computational geometry, two points
are visible to each other if is possible to draw a line segment between them that does not
intersect any geometrical obstacle; these obstacles can consist of a polygon, a set of polygons,
line segments, planes or other geometric figures (O'Rourke 1994, O'Rourke 2004). Accordingly,
the concept in computational geometry equivalent to an isovists is that of a visibility polygon: if
visibility obstacles are defined by line segments, the visibility polygon consists of the locus of all
points visible from a point p in a plane (Preparata and Shamos 1985, 322). This region will be
defined by a (possibly unbound) polygonal region.

The study of the algorithmic complexity is essential in computational geometry. The complexity
of an algorithm can be described as the order of growth of computer resources (memory and
processing time) in relation to the growth of the size of its input (for example the number of
lines defining a plan, or the number of cells in a tessellation, in some of the algorithms used in
Space Syntax). The study of complexity is also known as asymptotic analysis of algorithms, and
for representing this complexity it is common to use different types of asymptotic notations.
One of the most frequent ones is the “big O” -O(f(n))- notation, often employed to represent the

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 5

time complexity of an algorithm, that is, how the time necessary to perform an algorithm grows
in relation to the size of its input. Big O notation is used as an upper bound for complexity, and
in general it means that given an algorithm with a complexity of O(f(n)), beyond a certain size of
the input, its complexity will grow less than f(n) multiplied by a constant. For example, O(n)
would imply a linear time complexity , that is, the time required to run an algorithm will be, in
the worst case, and with an n sufficiently large, linearly proportional to its input; O(n2) is a
square time complexity, and it would imply that the time needed (in the worst case) by an
algorithm would grow as a square of the size of the input. O(1) implies a constant time, that is,
an operation that is independent of the size of its input. The study of complexity and its
different classes is a fundamental part of the theory of computation and the analysis of
algorithms. A good introduction and reference to algorithm analysis can be found in: Cormen,
Leiserson, Rivest and Stein’s “Introduction to Algorithms” (Cormen 2009).

Thus the following description of our method is based on the definition of an isovist as a
visibility polygon, and we will analyse the complexity of its calculations in the terms outlined
above. We will show how by preprocessing the input data into a triangulation it is possible to
reduce the time complexity of the visibility polygon substantially compared with naive or brute
force methods. Moreover, we show that it is possible to reduce the complexity of this
calculation so it does not depend on the size of the input (the number of obstacles, for example
line segments defining walls in our particular case), but on the actual size of the visibility
polygon, in terms of how many times it overlaps faces of the triangulation. The method
explained is an extension of the one originally proposed by Åsmund Izaki (Izaki and Derix 2013).
It uses data structures and algorithms from the Computational Geometry Algorithm Library,
CGAL, particularly the implementation of constrained triangulations (Pion and Yvinec 2013,
Boissonnat, et al. 2002). The use of these data-structures from CGAL allows also to efficiently
edit the geometry of the obstacles (the walls in our case), by effectively updating the underlying
triangulation. Thus we can calculate isovists in time independently of the size of the data, may
this be a building or a whole city, and edit this data (move, delete or add obstacles) with
constant complexity, as we will see.

4.2 Background and complexity of calculating the visibility polygon.

The use of triangulations and other convex subdivisions to perform visibility queries has been
proposed earlier. Descriptions of a number of algorithms and their complexity can be found in
Hershberg (Hershberger and Suri 1995, Hershberger 1989), and some of these can be adapted
for example to the fast calculation of the visibility graphs used in Space Syntax. The algorithm
we are using is particularly related to some of the basic concepts described in Aronov, Guibas et
al. (Aronov, et al. 1998), who employ balanced triangulations to efficiently calculate visibility
polygons. The principle for the algorithms explained in their paper is based on the intuition that
the complexity of the calculation of a visibility polygon should depend on its size, rather than
the size of the input data (Aronov, et al. 1998). The algorithm proposed by Aronov, Guibas et al.
has a space complexity of O(n2), and a time complexity of O(n2 log n) for preprocessing time,
and O(log2n+k) for the calculation of any visibility polygon, where n is the number of vertices of
a simple polygon, and where k is the size (the number of vertices) of the resulting visibility
polygon. The complexity of the calculation of the visibility polygon includes in this case the
location query, that is, finding out the triangle that contains the point from which we are
calculating the visibility polygon. The time complexity of the location query is in this case
O(log2n). The algorithm described by Aronov, Guibas et al. deals with simple polygons without
holes. Izaki’s algorithm works on a polygon with holes, and our own implementation with any
set of line segments (which may or not form polygons).

The problem of using a convex subdivisions for calculating visibility polygons can be seen to

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 6

consist of 3 separate problems: first, the pre-processing of the input (converting obstacles
defined by line segments into triangles, for example); second the location query problem, that is,
to find in which one of those partitions (triangles in our case) is the point from which to
calculate the visibility polygon, and third, the calculation of the visibility polygon proper.

Our approach is in some aspects less efficient than the one outlined above (particularly on the
location query), but easy to understand and implement, specially by using the CGAL constrained
triangulation. It allow us also to manipulate the input set of obstacles (line segments) in
constant time O(1). The complexity of preprocessing the input data into a triangulation is O(n2)
in our case. CGALs 2D triangulations use an incremental algorithm, and its upper bound
depends of the location query strategy used to insert each vertex of the input one by one into
the triangulation of previous vertices. The location query we have used is the naive method
provided by the CGAL 2D triangulation, which uses a walk strategy (Boissonnat, et al. 2002), and
has a worst case complexity of O(n), but which can have a complexity of only O(√n) for
randomly distributed vertices (Yvinec 2013). This running time of the location query can also be
improved by using a constrained Delaunay triangulation in CGAL (Boissonnat, et al. 2002). The
calculation of the visibility polygon is dependant on the number of times the algorithm visits
triangles that can be seen from the point defining it. We will proceed to describe in more detail
our algorithm for the calculation of the actual visibility polygon.

4.3. A detailed description of the algorithm for calculating the visibility polygon

4.3.1. Preliminaries
We will assume that both the preprocessing of the input data into a triangulation and the
location query have been performed, so we have a triangulation and we know the triangular
face in which the point that generates the visibility polygon is placed. From now on, and through
the rest of the explanation, we will refer to this point as the centre of the visibility polygon. The
characteristics and relation between obstacles and the triangulation we use (the CGAL
constrained triangulation) are as follows:

Obstacles are defined as non-intersecting line segments: these can be linked into closed or open
polygonal chains, or they can exist in isolation. We will refer to these segments as obstacle
segments in the rest of the explanation. The triangulation covers the convex hull (Preparata and
Shamos 1985, 18) defined by these obstacle segments: all vertices of the triangulation will be
endpoints of the obstacle segments, and all obstacle segments will correspond to edges of the
triangulation. This is easily achieved through the CGAL constrained triangulation, in which each
obstacle segment will correspond to a constrained edge in the triangulation (Yvinec 2013).

Figure 2: Triangulation of obstacle segments, by using a constrained triangulation. Observe that the obstacle segments
form an open polygonal chain and that there is also an isolated obstacle segment. The Convex hull is the closed polygon
defined by all outer edges of the triangulation.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 7

The position of the centre of the visibility polygon is assumed not to be on obstacle segments;
this is considered a degenerate case and not treated here, though the algorithm can be
extended to include it. For simplicity the algorithm described below only considers cases in
which the visibility polygon is completely bounded by obstacle segments. Our implementation
deals with unbounded visibility polygons (visibility polygons with portions that don’t meet any
obstacle segment and are thus open and of infinite size). We won't explain the particularities of
their treatment for the sake of clarity, it is enough to say that these are just especial cases of the
explanation given below, which include ways of treating triangulation edges in the convex hull
which are not obstacle segments, as well as the infinite edges used in the CGAL 2D triangulation
for defining the exterior of the convex hull (Yvinec 2013). The algorithm explained below also
assumes a triangulation data structure similar to the one in CGAL, in which a face in the
triangulation has access to all its vertices and neighbouring faces in O(1) constant time.

Figure 3: triangle traversal sequence. Step 0 corersponds to procedure VISIBILITY POLYGON(F). Other steps corresponds
to calls to VISIT FACE (F, EE, RV, LV). Observe how the algorithm visits only triangles visible from centre C.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 8

4.3.2. The algorithm:
The algorithm consist on a depth-first traversal of all the triangular faces visible from the centre
of the visibility polygon. The result of the algorithm will be the sequence of fans, each entry in
this sequence will represent a fan and consist of an edge E of the triangulation, and two
corresponding vertices, which we will call the left limit LL and the right limit RL. These entries
define a fan shaped area of the visibility polygon from its centre: a ray from the centre to the
vertex left limit LL will define the left side of the fan and a ray from the centre to the right limit
RL vertex, its right side. The edge E associated with these two vertices in the sequence, will
define the external bound of the fan. In the case of the bounded visibility polygon which we are
considering, the edges in the fans will always correspond to an obstacle segment. The way we
visit each triangular face in the algorithm makes sure that all the fans in the list are adjacent,
and ordered in counterclockwise manner. (Figure 3.B)

To build this list, we implement the depth-first search as a recursive function, which takes 4
parameters as input: a face F, an entry edge EE which belongs to the face F, and two vertices of
the triangulation, the left vertex LV and the right vertex RV, which define the limits of a fan area
from the centre of the visibility polygon. The algorithm can be described through the
pseudocode below, which it loosely uses the Pidgin Algol convention: the recursive procedure
VISIT FACE,takes the input just described and either adds a fan to the FANS sequence or recurses;
the VISIBILITY POLYGON procedure starts from the face that contains the centre of the visibility
polygon and calls VISIT FACE function for each face adjacent to this initial face. All traversal
operations in the triangulation (vertex in face opposite to an edge, other face on an edge, etc)
are depended of how the triangulation data structure is implemented. Using the CGAL 2D
triangulation data structure all these operations have a constant complexity O(1). Many other
data structures commonly used to represent triangulations have also constant complexity for
these operations, such as the the winged-edge or the half-edge data structures.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 9

 procedure VISIBILITY POLYGON(F)
input: the triangulation face F, which contains the centre of the visibility polygon
 begin FANS := ∅
 for each (edge e ∈ F) (*edges on a face are ordered counterclockwise*)
 begin of := the other face of e that is not F
 vr := the rightmost vertex in e when looked from any point inside F
 vl := the leftmost vertex in e when looked from any point inside F
 VISIT-FACE(of, e, vr, vl)
 end
 end

 procedure VISIT FACE (F, EE, RV, LV)
input: the triangular face F, one of its edges EE and triangulation vertices RV and LV
 begin if (EE is obstacle segment) then
 begin RL := RV
 LL := LV
 E := EE
 INSERT(FANS, {E, RL, LL})
 end
 else
 begin ov := vertex in triangular face F opposite to edge EE
 er := edge in F to the right of ov from any point inside F
 fr := the other face of er that is not F
 el := edge in F to the left of ov from any point inside F
 fl := the other face of el that is not F
 if (ov is to the right of the ray that goes from centre to RV) then
 begin VISIT FACE(fl,el,RV,LV)
 end
 else if (*ov is to the left of the ray that goes from centre to LV) then
 begin VISIT FACE(fr,er,RV,LV)
 end
 else (*ov is within the fan defined by centre and RV and LV*)
 begin VISIT FACE(fr, er, RV, ov)
 VISIT FACE(fl, el, ov, LV)
 end
 end
 end

Figure 4: Step 4 from figure 3 in detail (corresponding to the VISIT FACE (F, EE, RV, LV) procedure): since ov is to
the left of the centre -LV ray , step 5 will continue only with the edge and face to the left of ov (seen from EE),
and with RV and LV as limits.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 10

As we can see from the pseudocode, if all operations dealing with the triangulation have
constant complexity, the running time of the algorithm will be dependent of the faces it visits. It
is possible that the algorithm visits a face more than once, if this face is cut by more than one of
the fans defined by the left vertex LV and the right vertex RV in the above function (as in Steps 5
and 8 in figure 3, for example).

In order to draw or analyse the visibility polygon it is possible to iterate though the FANS
sequence, once this has been calculated, as follows:

 procedure DRAW VISIBILITY POLYGON (FANS)
input: the FANS sequence of fans, each defined by an edge and 2 vertices of the triangulation
 begin for each (f ∈ FANS)
 begin ptr := ptl := ∅
 if(f.RL is not vertex of f.E) then
 begin ptr := intersection of the ray from centre to f.RL with f.E
 DRAW LINE (f.RL, ptr)
 end
 else ptr := f.RL
 if(f.LL is not vertex of f.E) then
 begin ptl := intersection of the ray from centre to f.LL with f.E
 DRAW LINE (f.LL, ptl)
 end
 else ptl := f.LL
 DRAW LINE (ptr, ptl)
 end
End

This iterates through the FANS sequence we have built, and does the following: f is an instance
of the data structure we use to store the fan data, and f.E, f.RL and f.LL are the edge, the right
limit and left limit vertices respectively. If f.RL is not a vertex of edge f.E, then it is a vertex that is
projecting on f.E. Draw then the projection line from f.RL onto f.E. Proceed similarly for f.LL.
Draw finally the line segment which is the visible part of edge f.E (the obstacle segment). This
visible part of f.E will either be made of the triangulation vertices at its ends, if f.E is completely
visible, or otherwise limited by the projections of f.RL or f.LL (or both) onto the f.E obstacle
segment.

4.4 Performance test.

As an example of the performance of the method, we have run a simple test, using a file
containing all buildings within the city limits of Stockholm, consisting of 49168 line segments.
Using a standard laptop with a 2.8 GHz Intel Core i7 processor, it took a bit over 8 seconds to
generate the constrained triangulation. Adding and moving visibility polygons, as well as editing
the data (deleting or adding buildings) could be then performed in realtime (Figure 5).

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 11

Figure 5: Real-time isovists with a sample file of all buildings in the centre of Stockholm

5. Conclusions

Our intention with this paper has been to show how the use of Space Syntax as a design tool
involves both methodological and technical challenges, and how these are strongly
interdependent. An emphasis on graphic and interactive capacities, will necessarily lead to the
need of a careful treatment of the computational aspects of their performance. In the paper we
have also proposed a style of developing Space Syntax software, which rather than proposing
general tools, is instead based on assembling components into software tailored to specific
project needs. This will necessarily imply the generation of a common pool of frameworks,
methods and algorithms, that can eventually be shared between different practitioners and
researchers.

We have also introduced an example of using such an approach, and given a detailed
description of one its main constituents, a method for the calculation of isovists with a lower
complexity than the methods commonly available in Space Syntax. The paper is also an attempt
to introduce in the description of Space Syntax problems some of the rigour common in the field
of Computational Geometry. While Computational Geometry has been referenced previously in
the context of Space Syntax (Peponis, et al. 1997, Peponis, et al. 1998) the intersection of these
two fields deserves a more exhaustive study. Computational Geometry offers an extensive and
rigorous treatment of geometrical problems of high relevance to Space Syntax, with a special
emphasis on the complexity of their implementation through algorithms. Our proposal to
calculate isovists both in this paper and in Izaki’s work (Izaki and Derix 2013) shows but an
example of the potentials of these intersections.

The software discussed in this paper (OS X version) and its C++ source code distributed under
the Open Source GPL 3 license are available at:
http://kth.diva-portal.org/smash/get/diva2:587411/SOFTWARE01.zip.

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 12

References

Aronov, Boris, LeonidasJ Guibas, Marek Teichmann, and Li Zhang. 1998. "Visibility Queries in
Simple Polygons and Applications." Chap. 38 In Algorithms and Computation, edited by
Kyung-Yong Chwa and OscarH Ibarra. Lecture Notes in Computer Science: 358-67.
Springer Berlin Heidelberg.

Benedikt, M. L. 1979. "To Take Hold of Space: Isovists and Isovist Fields." Environment and
Planning B 6(1): 47-65.

Boissonnat, Jean-Daniel, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette Yvinec.
2002. "Triangulations in Cgal." Comput. Geom. Theory Appl. 22: 5-19.

Cormen, Thomas H. 2009. Introduction to Algorithms. 3rd ed. Cambridge, Mass.: MIT Press.
Hershberger, J., and S. Suri. 1995. "A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a

Walk." Journal of Algorithms 18(3): 403-31.
Hershberger, John. 1989. "An Optimal Visibility Graph Algorithm for Triangulated Simple

Polygons." [In English]. Algorithmica 4(1-4)(06/01): 141-55.
Izaki, Åsmund and Christian Derix. 2013. "Visible Polygon Traversal Algorithm (Forthcoming)." In

2013 European Architectural Envisioning Association (EAEA) 11th Conference.
Politecnico di Milano, Milano, Italy.

March, Lionel. 1976. The Architecture of Form. Cambridge Urban and Architectural Studies.
Cambridge; New York: Cambridge University Press.

Markhede, H., P. Miranda and D. Koch. 2010. "Spatial Positioning Tool: Background, Prototype
Software and Some Correlation Data." The Journal of Space Syntax 1(1): 14.

Miranda Carranza, Pablo, Asmund Gamlesaeter and Christian Derix. 2008. "3d Isovists and
Spatial Sensations: Two Methods and a Case Study." In EDRAMOVE & SFB TR8
conference on spatial cognition. Veracruz, Mexico.

O'Rourke, Joseph. 1994. Computational Geometry in C. Cambridge; New York: Cambridge
University Press.

O’Rourke, Joseph. 2004. "Visibility." In Handbook of Discrete and Computational Geometry,
Second Edition. Discrete Mathematics and Its Applications: Chapman and Hall/CRC.

Peponis, J., J. Wineman, S. Bafna, M. Rashid, and S. H. Kim. 1998. "On the Generation of Linear
Representations of Spatial Configuration." Environment and Planning B: Planning and
Design 25(4): 559-76.

Peponis, J., J. Wineman, M. Rashid, S. H. Kim, and S. Bafna. 1997. "On the Description of Shape
and Spatial Configuration inside Buildings: Convex Partitions and Their Local
Properties." Environment and Planning B: Planning and Design 24(5): 761-81.

Pion, Sylvain and Mariette Yvinec. 2013. "2d Triangulation Data Structure." In Cgal User and
Reference Manual. CGAL Editorial Board.

Preparata, Franco P., and Michael Ian Shamos. 1985. Computational Geometry: An Introduction.
Texts and Monographs in Computer Science. New York: Springer-Verlag.

Tandy, C. R. V. 1967. "The Isovist Method of Landscape Survey." Methods of Landscape Analysis:
9-10.

Turner, A., M. Doxa, D. O'Sullivan, and A. Penn. 2001. "From Isovists to Visibility Graphs: A
Methodology for the Analysis of Architectural Space." Environment and Planning B:

Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013

P M Carranza, D Koch and A Izaki: Spot with paths, and interactive diagram with a low
complexity isovist algorithm

062: 13

Planning and Design 28(1): 103-21.
Yvinec, Mariette. 2013. "2d Triangulations." In Cgal User and Reference Manual. CGAL Editorial

Board.

