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Abstract 

This paper presents a computational toolkit developed for configurative architectural design, i.e. 

a computational design process, equipped with real-time space syntax analyses in a parametric 

CAD environment, which begins with defining the desired spatial configuration in form of a 

bubble diagram. The syntactic design methodology put forward by this toolkit is aimed at 

bridging the gap between space syntax as an analytic theory of architecture and architectural 

design practice. The toolkit has been made in an attempt to investigate the possibility of deriving 

at plan layout patterns through sketching spatial configuration using an ‘interactive bubble 

diagram’ that represents a spatial connectivity graph. In other words, we have worked on a way 

of reaching at concrete plan layouts from an abstract connectivity pattern as a graph. Beginning 

the design process with a graph allows for real-time feedback of Space Syntax measures such as 

integration, choice and difference factor. Besides, by choosing every space as a ‘root’, designers 

can immediately view their configurative ideas, literally from different points of views in 

automatically drawn justified graphs. In this paper, we give an overview of a syntactic design 

process as a graph theoretical approach to architectural design and report our preliminary 

results. 
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Background 

If we consider spatial arrangement as a fundamental aspect of architecture that affects the likely 

social performance of buildings, then some sort of spatial analysis should be an integral part of 

architectural design process. Space Syntax as an analytic theory of architecture, has established 

a body of knowledge about spatial qualities of architecture, their likely social effects, and a 

methodology for analysing them. Besides, Space Syntax inspires the idea of syntactic design 

process as it suggests architectural design is configurative per se (Hillier 2007, 1). There are 

quite a few analytic tools for Space Syntax analyses, but to the best of our knowledge, there has 

been no direct application of Space Syntax in generative design in (recently parametric) CAD 

platforms1. This is partly because of technical difficulties in merging design and analysis 

platforms, mathematical complicacy of configurative design in itself, and perhaps, partly 

because of methodological neglect. Several researchers have worked on computational plan 

layout, most of which following evolutionary form-finding methodologies. A survey of such 

methodologies can be found in (Lobos, D, Donath, D 2010). We criticize viewing architectural 

design as an automated evolutionary process for two main reasons: First, because it implies that 

configuration is an order that can be ‘found’ through a course of automated trials and errors. 

We find this approach in fundamental contradiction to viewing architectural design as an 

‘intellectual’ process aimed at ‘proposing’ configurations as to their desirable social implications. 

Second, we question the comprehensiveness of automated performance ‘evaluation’ in the 

mentioned approaches; especially because we question the soundness of ‘automated 

evaluation’ of social qualities pertained to configuration. Based on the work of March and 

Steadman (March, L, Steadman, P 1974), (Steadman 1983), we propose an alternative approach 

rooted in consideration of “how designers think” (Lawson 1980). We deem design process as an 

intellectual process of progressing ideas, which develop over time as “problem & solution” 

definitions (Dorst and Cross 2007). More specifically, we see architecture as being prominently 

about spatial configuration, i.e. interrelating functional spaces in a particular way to serve a 

higher order purpose. Whether we think about such matters explicitly or not; the outcome of an 

architectural design process is essentially a configuration; we therefore decided to make it an 

explicit exploration process. Our alternative is an interactive syntactic design process powered 

by real-time analytic feedback on spatial properties, in which designers have full intellectual 

control over spatial configuration and evaluation benefiting from computation in systematic 

analysis and synthesis. 

Introduction 

Our initial idea of an applied syntactic design methodology was based on bubble diagrams 

conventionally used by designers. The subtle fact about a bubble diagram is that it is a 

comprehensible configurative tool for designers and at the same time for computer programs 

and that it does not suggest a single geometric form. Bubble diagrams convey very important 

meanings that may not be seen easily by bare eyes; for instance they implicate which spaces are 

to be relatively private and which ones are to be communal and much more. We find it very 

important to reveal such meanings from the very begging of a design process, and report these 

meanings to the designer so that they can see whether the bubble diagram corresponds to their 

initial ideas about matters such as privacy and community of spaces. Our proposed system reads 

a bubble diagram in an intuitive way and translates it into a connectivity graph; it later provides 

the designer with Space Syntax measures; and eventually explores a particular class of plan 

layout patterns, which have the same connectivity pattern represented in the initial bubble 

                                                      
1 Design usually is carried out within CAD platforms and available analytic software applications do not support CAD 

functionalities in general; therefore, we decided to bring analytic functionalities into a popular CAD platform. Our 

toolkit is developed in VB.NET that is installed as an add-on for Rhinoceros® CAD environment and its parametric 

modelling platform Grasshopper© . 
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diagram. These patterns can be used later as starting points by designers to elaborate their plan 

layouts. We need to give an overview of the last phase very carefully before we go further. The 

idea of exploring concrete (say geometric) plan layout patterns, which share an abstract 

connectivity pattern (a graph), brings about many questions: most fundamental of which is how 

many alternatives could be out there? In fact, a theoretical answer is that, in general, there 

could be countless number of plans sharing the same connectivity pattern. However, if we 

confine the search into a specific class of geometric shapes, such as rectangles, there can be a 

way to enumerate several alternatives systematically, according to the design inputs. A workable 

idea is to first reach at a topological embedding of a connectivity graph to bring it closer to 

become a geometric pattern. Throughout the process, in a few steps, the number of possibilities 

grows rapidly so that we need to select certain paths, methodically, to explore ranges of these 

possibilities (technically referred to as a design space). Figure 1 depicts a schema of such a 

design space and the challenge of exploring it systematically.  

 



Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013 

P Nourian, S Rezvani and S Sariyildiz : A syntactic architectural design methodology 048: 4 

 

 

Figure 1: is a phase model schema of the proposed design methodology. Note that at phase 1, there is only a single 
alternative at hand, and then at the end of phase 2, we will have several alternatives, among which we can choose the 
one that has the best aptitude in terms of the size correspondence of its cells to the initial bubble diagram. We do this by 
choosing the one that its cells have almost the same size distribution as the given list of areas, using a ‘minimum squared 
error’ fitness criterion. This way, we reduce the amount of alternatives to one at this level. Later, we will potentially have 
m different dimensionless rectangular cell configurations, each of which permits several dimensioned plan layout 
patterns. Therefore, we could imagine that the total number of alternatives would be of orderm × o. So far, we have 
developed the algorithms of phase 0, 1 and 2.   

The Design Methodology Put Forward by the Toolkit 

Our design methodology is actually a fusion of what was proposed by Steadman (Steadman 

1983, 69-75), Tutte’s (Tutte 1963) convex drawing algorithm, an innovative force directed 

algorithm, several minor algorithms, and real-time Space syntax analyses. Following our design 

methodology, designer is free to insert a configurative idea and change it as they think is best, 

both at the beginning and during the process2. In a manner of speaking, our tools are meant to 

reveal meanings and implications of such inputs. The whole methodology can be comprehended 

looking at Figure 2.   

                                                      
2 Our process does not automate the design process in any sense. 
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Figure 2: shows a flowchart diagram of the design methodology suggested by the toolkit. Without using a topological 
embedding like the one we have developed based on Tutte algorithm and further a ‘high resolution’ graph drawing 
method like the physical drawing algorithm we have developed, it is impossible to untangle messy bubble diagrams 
automatically. We believe that users should be able to sketch freely the inter-relations, without worrying about geometry 
at all. We leave the necessary changes in inputs for the users for we believe the interpretation of configurational qualities 
is very complex and dependant on contextual particularities, so that it can only be performed by a human intellectual 
thinker. This is why we have shown the feedback arrow differently: to stress the fact that this is not an automated 
feedback. Our tools do not perform any form finding or form optimization whatsoever; they merely reveal what is 
implicated by the user’s configurative inputs.  

The course of actions suggested by our proposed design methodology and supported by this 

tool suite is as technically described below (we have marked what is automated by the tools 

with bullets; the numbered items are what expected from the user to do with the tools). We 

could potentially combine most of the tools in a single box; however, we chose to let the curious 

user be able to explore different possibilities for combining the tools and provided them as a 

toolkit. The first sets of tools that a user needs are those shown in Figure 3. These tools cover 

the first six stages of our proposed design methodology introduced before. 

1. Start with putting a number of arbitrary points as for defining the centre of functional 

spaces 

2. Provide a list of (rough or exact)3 area values for all functional spaces 

3. Provide a list of spatial labels (names) for the functional spaces • A tool assigns rainbow colours to the functional spaces to make them more 

recognizable (see Figure 3).  • A graph reader puts circles of sizes specified by the area values around all centre 

points (see Figure 3 and Figure 4). • The graph reader tool provides a sketchpad with nominal “North, South, East and 

West” sides for the user to draw the connections in (see Figure 3 and Figure 4).  

4. According to your configurative ideas, draw a line between every pair of points (circles 

representing functional spaces) that you think should be directly linked. Add a few 

links to relate some of the spaces to the Northern, Southern, Eastern, or Western 

                                                      
3 If the user wants to achieve a needed total area, it is enough to provide rough values and the tool puts out a set of 

area values that exactly sum up to the required area. 
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frontiers of the plan. These links are vital as they further guarantee that certain spaces 

be naturally lit in a desired way.   • The graph reader interprets the input links and points and their “label & area & 

colour” attributes as a graph (see Figure 3 and Figure 4). • It provides the user with a verbal interpretation of links between spaces. • It tells the user4 if there can ever be a plan in one floor with such connections 

(corresponding to a planar graph)5.  

5. Provide the convex drawing tool (Shown in Figure 3, based on Tutte algorithm (Tutte 

1963)) with the connectivity graph obtained in the previous stage, graph vertices, 

original centre points and NEWS (North, East, West, South) points derived from the 

graph reader. • This tool untangles the proposed bubble diagram and delivers a planar convex 

drawing of the connectivity graph6; and tells the user if a floor plan is admissible 

for the set of connectivity requirements; provides an ordering for automated 

justified graph drawing; and distinguishes a sub graph of the whole connectivity 

graph (excluding NEWS vertices). This sub graph, its vertices and its attributes will 

be used further on (See Figure 4). • This tool also generates error messages when the connectivity graph is not 

planar. 

                                                      
4  According to the famous Euler formula (F + V - E = 2), this tool also tells the user the number of faces for a 

topological embedding of the plan graph on a plane for a potential planar embedding. 
5  In a later stage, we use the Tutte algorithm and theorem (Tutte 1963) for our definitive planarity test. If the input 

graph is planar and triconnected, then the drawing output by the barycentre algorithm is planar, and every face is 

convex. 
6  This is possible only if the graph is planar per se; in other words, if a planar embedding of the graph exists, it will be 

the output of this algorithm, meaning that if the output is not planar, the input graph is not planar. 
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Figure 3: The set of tools in A are for formalizing a programme of requirements. One of the tools assigns arbitrary colours 
to the functional spaces to make them better recognizable. The set of tools in B, from left to right: Graph Form reads a 
graph of the connectivity and adjacency requirements, from a set of points that user puts in to represent the functional 
spaces. It immediately draws a sketchpad where designer draws a rectangle, and asks for necessary adjacencies with 
NEWS frontiers (as shown in Figure 4); then it asks for the links between functional spaces. The main output here is the 
graph, which is not in the right shape for further operations. This graph does not have a topological embedding until it is 
embedded with our modified Tutte algorithm for convex drawing. After this key operation, the algorithm delivers a 
convex planar embedding, a sub graph, a set of vertices and a subset of attributes that are vital inputs for all other 
operations. Our preliminary plan-layout component is also shown at the right top.  
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Figure 4: shows respectively: the sketchpad, a sample configurative input, an untangled convex drawing obtained from a 
customized Tutte algorithm, the sub graph containing exclusive information about the functional spaces, a kissing disk 
drawing obtained from our Force-Directed graph drawing algorithm (in this diagram the links between disks are coloured 
according to their segment choice values.)  

6. Provide the space syntax components (see Figure 5, group D) with the sub graph 

found at the fifth stage, its vertices and its attributes. • The Space Syntax components perform the following analyses: 

a. It computes a list of depth-maps that is a set of graph-theoretical 

distances of all nodes (spaces) from one another. This is later used for 

automated justified graph drawing.  

b. It does the integration analysis according to the method introduced in 

(Hillier, B. Hanson, J. 1984); it also delivers a verbal report saying which 
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space is the most integrated (potentially communal) and which one is 

the most segregated (potentially the most private space) in the whole 

configuration. It also delivers a comparative table of integration values.  

c. It calculates a list of control values as introduced in (Ibid).) 

d. It computes the choice values as introduce in (Hillier, B, Shinichi, I 2007) 

for all spaces and for the links between them.  

e. It finds and reports the difference factor as introduced in (Hanson 1998).  

7. Provide the justified graph component with the depth-maps found in the previous 

stage, the sub graph found at the fifth stage, its vertices and its attributes; then you 

may choose a point of view to look at your proposed configuration literally from 

different points of views (see Figure 6).  • This tool automatically draws justified graphs (Ibid) from whichever point of view 

that the user chooses. It is meant to make it easy for the user to feel the meaning 

of depth and integration by means of interaction. “This is the simple fact that a 

pattern of space not only looks different but actually is different when justified 

from the point of view of its different constituent elements. It is through the 

creation and distribution of such differences that space becomes such a powerful 

raw material for the transmission of culture through buildings and settlement 

forms, and also a potent means of architectural discovery.” (Hillier 2007, 22). The 

algorithm embedded in this tool benefits from an ordering found out of Tutte 

convex drawing, that certifies ‘good’ graph drawings (with the fewest possible 

crossing edges7). 

8. Provide the physical drawing tools with the sub graph and its vertices obtained from 

previous stage8.  

This tool contains our force-directed graph-drawing algorithm and makes a “kissing 

disk” drawing of the bubble diagram9. Our force-directed component is quite 

intuitive and shows in real-time feasible planar spatial arrangements according to 

the specified areas and the connectivity graph (Figure 4).  

                                                      
7 It is important to note that even for a planar graph, there is no guarantee that all justified graphs be possibly drawn 

without crossings. 
8 This algorithm and some other details are better explained in a forthcoming paper of us in eCAADe 2013 

proceedings, named Designing with Space Syntax. 
9 This tools is quite efficient and makes such a drawing usually in about a second or less than that for a few small 

configuration as tested on a Intel® Core™ i7-2640M Dual Core (2.80GHz,4M cache) machine, usually in less than 500 

iterations. 
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Figure 5: Group C shows our Force-Directed graph-drawing algorithm, which delivers a kissing disk drawing of a bubble 
diagram. This algorithm works by a set of attractive and repulsive forces acting recursively on graph vertices. Group D 
shows a set of tools performing Space Syntax analyses and reporting orders of Space Syntax measure on a sample 
architectural design assignment. Our Justified Graph component provides a unique opportunity for designers to draw 
justified graphs automatically in real-time.  
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Figure 6: shows a few justified graphs drawing for the sample input discussed above. Our automated drawing algorithm 
uses an ordering that certifies a ‘good’ drawing with fewest possible crossings.  

9. Deliver the sub graph and its vertices to a dual graph component (results shown in 

Figure 7)  • This tool finds a dual graph for every admissible triangulation of the connectivity 

graph. A triangulation here implies that certain adjacencies, which had not been 

seen in the bubble diagram are being added to the input to make the whole 

configuration as compact as possible (we are still developing an automated 

triangulation algorithm) (see Figure 8). • After a catalogue of triangulations and their dual graph is made, the one with the 

minimum squared error (SSR) in terms of difference of its cells’ area to the areas 

given by designer is chosen automatically as a root for further explorations. One 

of the triangulations in Figure 8 is chosen as to its aptitude in terms of area 

distribution and worked out manually in Figure 7. 

10. Hand in the chosen triangulation to the rectangular drawing component (this 

component is still under development. This tool is to reveal all possible dimensionless 
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plan layout diagrams sharing the same connectivity graph. It is important to mention 

that these diagrams just show possible spatial arrangements without suggesting any 

actual size or dimension. (Like the one shown in Figure 7). 

11. Provide the dimensioning algorithm (still under development, introduced in (March, L, 

Steadman, P 1974), (Steadman 1983) and (Roth, J & Hashimshony, R 1988)) with the 

initial list of areas to generate dimensioned plan layout diagrams (Like the one shown 

in Figure 7). These diagrams can be starting points for the user in order to elaborate 

plan layouts.  

12. You may choose to visualize graphs wherever you want by providing graph 

visualization components with a plane for location and orientation of the picture of 

the graph you want to see.   

 

Figure 7: (Left) shows a triangulation of the augmented connectivity graph containing NEWS vertices, a dual graph 
corresponding to a fully triangulated connectivity graph, and its rectangular dimension-less drawing (middle); meaning 
that the present sizes and proportions of the cells do not indicate any actual sense yet. This rectangular drawing can be 
dimensioned later (like in Right), according to the initial requirements, by means of another algorithm. This is not the 
ultimate design outcome, but simply one of possible rectangular drawing of the proposed bubble diagram. The point is 
that when triangulating a connectivity graph, we need to introduce adjacencies, which are not necessarily required by 
the user, these adjacencies usually happen in actual plans to make them compact, in any case a connectivity graph is a 
spanning sub graph of an adjacency graph (Steadman 1983, 71-72).  
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Figure 8: Figure 8 shows 18 admissible triangulations of the convex embedding of the connectivity graph, each of which 
ranked with a SSR (Sum of Squared Errors) score indicating the deviation of that alternative from the given list of areas. 
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Discussion   

A single bubble diagram, with the help of some additional geometric constraints, can eventually 

be interpreted into a catalogue of feasible plan layout diagrams, all of which share the same 

configurational features (those pertained to topological properties only). In other words, a graph 

as a topological entity may correspond to a set of plan-layouts. A graph-theoretical design 

process, not only does not limit the creativity of a designer, but it actually enhances the 

designer’s view and reveals multiple possible interpretations of a single idea put into a bubble 

diagram. We have succeeded in bringing the analytic power of space syntax theory into a CAD 

platform and initiated an integrated configurative design methodology; except that the last 

phase (the automated rectangular graph drawing) is still at a preliminary level and needs more 

developments. Regarding the drawbacks and limitations of our methodology, we should clarify 

one important issue: when sketching the functional interrelations, it is necessary for our convex 

drawing algorithm to be provided with connections to geographic out-sides. However, this is 

more a theoretical limitation than a technical problem, because the Tutte algorithm needs a set 

of fixed vertices to find a convex embedding of the inner vertices. It could also be that the 

convex drawing algorithm delivers results with extremely poor resolution for poorly connected 

graphs. This is again a theoretical limitation. In any case, our physical drawing algorithm is 

capable of untangling complex configurations and deriving at a ‘good’ drawing of them. 

However, we cannot theoretically prove its convergence, as there are no such proofs for other 

force-directed algorithms. Nevertheless, this method is practically quite effective and intuitive 

for graph drawing, and in our case proved very efficient as well.  

As mentioned in introduction and explained in Figure 1, this methodology is only workable 

under certain limit conditions. It is not capable of exploring ‘all’ possible geometric counterparts 

of a single connectivity graph, not even for a particular class of cell configurations as rectangular 

dissections. We are still critically investigating the soundness of the selection method we use to 

choose a ‘promising’ triangulation. However, we have almost reached to the conclusion that 

without a selection at this stage the number of possibilities would be ‘too many’ in relatively 

large problems. Our main prospect is to overcome a few minor technical issues and publish the 

tools as a freeware package10 to benefit from critiques of a large group of interested designers 

for improving the tools in action. We hereby acknowledge that our methodology still needs to 

be further tested in real-world design problems. 

The main innovative aspect of our design methodology, apart from developing a HCI (human 

computer Interaction) interface for a sophisticated course of actions, is the unique combination 

of a set of formerly unrelated methods and techniques, e.g. using a Tutte convex drawing for 

untangling bubble diagrams.   
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