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Abstract 

Although spatial decomposition is a commonly required process in the analysis of space, only a few 

rigorous methods such as convex partitioning have been proposed and used in practice. This paper 

discusses the shortcomings of current methods such as operational arbitrariness during the 

decomposing process and inherent difficulties in automation. Then, this paper proposes a new 

method for discretizing space based on maximizing the modularity of the visibility graph of a given 

floorplan. It is shown that the new method is robust to operational arbitrariness and can be easily 

automated. Moreover, the method decomposes space into subspaces based on the global property of 

the spatial network in contrast to the traditional methods using only local properties.  Another 

advantage of the new method is the capability of adjusting the resolution of decomposition 

according to a researcher’s purpose of analysis. We expect that the new method is useful to construct 

a spatial network as well as to analyze the deep structure of given space. 
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1. Introduction 

Decomposing space into subspaces and translating it into a discrete system gives benefits to 

researchers. Firstly, representing space as a discrete system helps researchers to easily 

understand the spatial structure by decreasing its complexity. Secondly, once the system 

becomes discrete, analytic methods that are only applicable to discrete systems - for example, 

network analysis - become available to apply. The benefit of describing space as a discrete 

system in terms of analytic power has been well shown by Space Syntax over a few decades. 

However, to translate a spatial layout into a discrete system is not an easy task (Peponis and 

Wineman 2002). Only a few rigorous methods for the discretization of space have been 

developed so far such as convex partitioning (Hillier and Hanson 1984) and e-partitioning 

(Peponis et al. 1997), both of which have limitations.  

Firstly, current methods requires a certain degree of approximation in spatial structure or minor 

violations of protocols when the methods are applied to space with, for example, a curved wall, 

a concave wall, a free-standing column, and a small indent. This looks trivial when such 

elements are ignorable. However, this becomes a source of arbitrariness in decomposition when 

those elements are no longer ignorable. 

Secondly, current methods consider only how well a ‘cut’ of space achieves the internal 

completeness of resultant subspace such as convexity. The methods do not consider how well 

the cut separates adjacent subspaces. For example, what convex partitioning cares is whether 

resultant subspaces by the cut are convex, not how effectively the cut separates the two 

subspaces. In addition, current methods does not utilize the global property of spatial structure 

during the partitioning process; instead, only local spatial structure is used in determining the 

location of cut.  

Lastly, current methods does not have a well-defined way to adjust the ‘resolution’ of 

decomposition. A researcher working on an analysis of a huge building may want to ignore 

trivial violations of the convexity rule in convex partitioning to reduce unnecessary bias in the 

building’s spatial configuration. Or the researcher may want to merge small e-spaces with tiny 

differences in visual information to reduce unnecessary complexity beyond one’s purpose of an 

analysis. However, there is no ‘native’ method or well-established process for current methods 

to adjust the coarseness or fineness of decomposition. What a researcher can usually do is to 

ignore trivial violations or to merge small subspaces on the fly at the risk of arbitrariness. 

The aim of this study is to propose a new method for space discretization that is readily 

applicable to the real world’s space with curved walls, columns, and indents; that provides a 

partitioning process considering the quality of spatial separation with a view to global spatial 

structure; and that enables to adjust the level of analytic resolution within its process. The core 

idea of this method is to apply a community detection algorithm to the visibility graph of a floor 

plan so that a ‘community’ of grid points in the visibility graph becomes each partitioned space.  

2. Background 

2.1 Need of area –based decomposition 

There has been three ways to translate a floorplan into a discrete system: line-based 

decomposition, area-based decomposition, and point-based decomposition. Each approach has 

its own strengths and weaknesses. 
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Line-based decomposition usually means axial line decomposition. Axial line representation of 

space is suitable for linear spaces such as streets or roads and makes the calculation of the 

number of turns easier. For indoor spaces, it is fairly useful for closed plan with well-defined 

corridor spaces and cell-type offices. However, axial line decomposition is often too coarse for 

indoor spaces, and it does not appropriately represent the spatial structure of open plan. 

Since Visibility Graph Analysis (VGA) technique was introduced (Turner and Penn 1999), 

area-based analysis such as convex map analysis is sometimes looked as an inferior alternative 

to point-based analysis such as VGA. VGA has two strengths over area-based analysis. Firstly, it 

has much higher ‘resolution’ of analysis and hence suitable for very detailed analysis. Secondly, 

it requires much less effort to build a spatial network than convex partitioning. Unlike convex 

partitioning that requires to manually draw convex polygons and link them in order to build a 

spatial network, VGA has an automated process of building a spatial network. 

Visibility graph analysis, however, tends to over-estimate a large room’s spatial properties under 

some circumstances. This mostly happens when a researcher takes the average property of 

points in the space as the property of the space, which is very common practice. Let’s think 

about an imaginary floor with two rooms connected by a corridor space (see Figure 1). The floor 

has a symmetrical layout except for the size of the two rooms. We are interested in mean depth 

of each room. Let’s build a visibility graph on the grid points in the floor. From a grid point in a 

room, all of the grid points in the same room are one step’s away; the grid points in the corridor 

are two steps’ away; finally, the grid points in the other room are three steps’ away, which is the 

maximum distance. Then, the average of mean depth of the grid points in the large room would 

be significantly smaller than that of the grid points in the small room because a grid point in the 

large room has more grid points at one step’s away and less grid points at two steps’ away than 

a grid point in the small room. In Figure 1, for example, from point A in the large room, 29 

points are at one step’s away, 10 points at two steps’ away, and 10 points at three steps’ away. 

So the mean depth of point A is 1.61. All points in the large room will have this value if we 

ignore trivial exceptions on the border.  From Point B in the small room, 10 points are at one 

step’s away, 10 points at two steps’ away, and 29 points at three steps away. So the mean depth 

of point B is 2.39 and all points in the small room will have this value. Thus, if we take the 

average of mean depth of the grid points in each room as the representative value of mean 

depth, or accessibility, of each room, then the large room becomes much more accessible than 

the small room even though the two rooms occupy symmetrical locations.1 Such bias happens 

solely because the large room is large and small room is small, not because the two rooms 

occupy such spatial locations.  And the bias would not happen if we decomposed the floor into 

three ‘areas’, instead of 49 ‘points’. 

           

Figure 1: Imaginary floor with two rooms 

                                                      
1 The bias would not go away when we calculate mean depth without the points in the same room. The bias persists 

because the size of the other room matters. For example, if we calculate the mean depth of a point in the large room 

excluding the points in the same room, the mean depth is (10*1 + 10*2)/20 = 1.5. And the mean depth of a point in 

the small room is (10*1 + 29*2)/39 = 1.74. Still, the large room has smaller mean depth. 
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Area-based decomposition is also useful when we need to count spatial events. For example, we 

often need to answer a question like “which space is the most frequently used for X?” or “where 

did X happen the most frequently?” because of very practical reasons. Also, by describing spatial 

events as frequency, a researcher can use statistical techniques for count variables. In order to 

count such frequencies, we need a ‘bin’ to put events in. Area-based decomposition can provide 

appropriate bins for such purpose. 

2.2 Traditional ways of area-based decomposition 

Convex partitioning 

Currently, the most widely used rigorous methods for the decomposition of indoor space is 

convex partitioning. This method aims to decompose a floor into the fewest number of convex 

polygons required to cover the floor (Hillier and Hanson 1984). Partitioning space into convex 

polygons is a very powerful concept because the convexity of space guarantees that any two 

people in the space can see each other. However, the process of convex decomposition is 

difficult to automate because it is known as NP-complete problem2 (Karp 1972). Thus convex 

partitioning has been mostly conducted manually.  

Manual convex decomposition is vulnerable to the arbitrariness of an operator who 

decomposes a floor because it is almost impossible to strictly apply the convexity rule under 

some circumstances.  

Firstly, convex decomposition is not applicable at all to space with a concave curved wall like 

Floor A in Figure 2. To decompose such a floor to convex spaces, we have to approximate the 

concave curved walls with a series of straight walls. Thus the composition of space is mainly 

determined by the way how the curved walls are approximated with straight walls. This means 

considerable amount of arbitrariness might be involved in the decomposition process.  

Secondly, convex decomposition does not handle well a space with small ‘indents’ or ‘bulges’. 

For example, the upper room on Floor C in Figure 2 would have only one convex space if there 

were no indents. However, because of the indents, the room should be split into three convex 

spaces lest convexity rule should be violated. If the indents become smaller, we would be more 

tempted to ignore such indents and to violate the convexity rule. This is another source of 

arbitrariness. 

Thirdly, more complicated case happens when we try to decompose space with a column. Let’s 

assume that we are going to decompose a room with free standing columns like Floor B in 

Figure 2 using convex partitioning method. There are three options. The first option is to literally 

follow convexity rule and to get 12 convex spaces3 from the simple room. The second option is 

to simply ignore all columns and to get only one convex space as if the columns are nothing to 

do with the separation of space. The last option is to ignore the columns’ size without forgetting 

the existence of the columns. This option gives us two or three convex spaces depending on the 

threshold for determining how many consecutive columns are regarded as a separator of space. 

If we set the threshold at four columns, we would have two convex spaces; if we set the 

threshold at two columns, we would have three convex spaces. Such threshold is, again, mostly 

arbitrary.  

                                                      
2 Convex partitioning is equivalent to finding minimum clique cover of visibility graph of the floor, one of the 

well-known graph theoretical problem because a convex space is equivalent to maximal clique in visibility graph. 

Minimum clique cover is known to be NP-complete. 
3 If the columns are circular ones, the columns should be approximated to straight lines before we apply convexity 

rule. We get 12 convex spaces when the columns are approximated to rectangular shape. If the columns are 

approximated to octagon, much more convex partitions would be required. 
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Figure 2: Exemplar floors for traditional methods 

We may think we can address the problem of arbitrariness by listing ‘exception rules’ related to 

convexity condition such as to ignore small indents less than one meter’s offset; to straighten 

concave walls with one meter’s segments; to ignore the thickness of a wall less than 0.3 meter; 

to approximate a circular column as a rectangular column; to ignore the spaces between 

columns closer than one meter and so on. However, to list complete set of exception rules 

seems not an easy task, and the rules may conflict each other. Moreover, to translate such rules 

into machine-understandable language looks even difficult. Partly because of the lack of 

well-defined set of machine-understandable exception rules, and partly because of inherent 

computational complexity of convex partitioning, there is no widely used computer program for 

the automation of convex decomposition to our best knowledge. Thus convex partitioning still 

conducted manually and is remained vulnerable to operational arbitrariness. 

E-Partition 

E-partition is a method of dividing spaces into e-spaces that are ‘informationally stable’ in the 

sense that any location in the e-space shares the same set of visible vantage points such as 

corners or end points of walls (Peponis et al. 1997).  This has been the most rigorous approach 

seeking the minimum ‘unit’ of space based on visual information. The method provides a 

mathematically well-defined set of subspaces, and its computational complexity is significantly 

lower than that of convex partitioning. 

In spite of its theoretical elegance, e-partition method has some limitations in its application.  
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Firstly, the method is difficult to apply to a floor with curved walls or boundaries that have no 

salient vantage points. In such a case, we need a rule for designating a point on the curve as a 

vantage point or a rule for converting the curve into straight line segments as we did for Floor A 

in Figure 2.   

Secondly, in many practical cases, e-partition method generates a large number of tiny e-spaces 

usually unsuitable for common analytic purposes. This is because the number of e-spaces 

dramatically increases and hence the size of e-space rapidly shrinks as the complexity of space 

increases4. Although having many small partitions help a researcher to conduct a fine-grained 

analysis, too many partitions make the floor’s spatial structure almost illegible (see e-partitions 

of Floor B in Figure 2). 

3. Proposed Method 

The core idea of this method is to decompose the visibility graph of a floorplan into closely 

interconnected groups of nodes. Then, the key becomes how to find such groups from the 

network and how good would be the grouping.  For this aim, this study utilizes a community 

detection technique developed for discovering closely related groups in a network. Later on, the 

new method proposed in this study will be called NCVG (Network Communities in the Visibility 

Graph) method.  

3.1 Visibility graph        

Unlike convex partitioning or e-partitioning that ‘cuts’ a floorplate into polygons with dividing 

lines to make subspaces, this method defines a subspace with a set of grid points on the 

floorplate in the same way that an isovist from a point can be defined as a set of points that are 

visible from the point. This approach that defines an area with a point set is also applicable to 

traditional methods like convex partitioning or e-partitioning. For example, a convex space can 

be defined as a set of grid points that forms a clique, or a complete graph. An e-space can be 

defined as a set of grid points sharing the same set of visible vantage points. As seen in the 

point-set based representations of a convex space and an e-space, the key process to identify a 

subspace is to identify a group of grid points that are closely related or that share the similar 

attributes. This method finds subspaces by identifying closely related groups of grid points using 

network structure of the visibility graph of a floor.  

3.2 Community detection        

Figure 3 shows a network structure with three obvious groups of nodes in the network. Each 

group has relatively many edges inside the group and fewer edges going outside of the group. 

Such a group is often called a ‘community’ by network scientist, which is usually defined as  “a 

cohesive group of nodes that are connected ‘more densely’ to each other than to the nodes in 

other communities” (Porter, Onnela, and Mucha 2009). Finding a community structure of a 

network has been proved to be useful in many fields. In biology, for example, community 

detection algorithms have been applied to protein-protein interaction networks to identify 

functional modules of proteins (Chen and Yuan 2006). In communication network, by analyzing 

community structure of an email exchange network in scientific labs, researchers could identify 

groups of people quite closely matched to the labs’ organizational structure and project 

assignment (Tyler, Wilkinson, and Huberman 2005). An analysis on the community structure of 

                                                      
4 In general, the number of e-spaces is proportional to the quadruple of the number of vantage points. The number of 

‘cutting edges’ is proportional to the square of the number of vantage points, and the number of sliced plane 

(e-space) is proportional to the square of the number of cutting edges. 



Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013 

Y Hwang: Network communities in the visibility graph 045: 7 

 

a citation network over 600 scientific journals presented a ‘map of science’ showing how each 

discipline in science is related to others (Rosvall and Bergstrom 2008).  

         

Figure 3: A network with obvious community structure 

There is also a traditional way of decomposing a network into subcomponents, which is often 

called graph partitioning. Unlike the community detection methods, graph partitioning requires 

to fix the number of clusters to be separated in advance (Newman 2006). The main goal of 

graph partitioning is to find the best division of network with the given number of divisions; 

hence, this approach is useful when we have a strong reason for the pre-fixed number of 

divisions. In this paper, we will not follow this line of approach as we do not have such a reason 

for the number of clusters in general spatial decomposition. So we will place more focus on 

community detection techniques, which does not require the number of clusters in advance. 

Modularity 

The crux of community detection is how to find ‘good’ partitions of a network. One approach is 

to set up a quality function measuring how good current partitioning is and then to optimize the 

quality function. Currently, one of the most widely used such a quality function is Newman’s 

modularity Q (Newman and Girvan 2004):  

      

                            

where m is the total number of edges in the network, A is the adjacency matrix of the network, 

ki is degree of vertex i, δ(ci,cj) is the delta function whose value is 1 when vertex i and j belong to 

the same cluster and 0 otherwise. In plain words, the modularity function Q measures the 

difference between the existing number of edges in the cluster and the expected number of 

edges in the cluster when the network is randomly wired ignoring community structure 

(Newman 2006). Thus, maximizing modularity Q means minimizing the difference between the 

number of intra-group edges and the expected number of inter-group edges (Fortunato 2010).  

A critical difference between modularity based decomposition and convex partitioning is that 

convex partitioning does not consider how inter-group edges are distributed across groups. Look 

at Figure 4 showing a floor with three rooms connected with two openings; one is wide and 



Proceedings of the Ninth International Space Syntax Symposium, Seoul, 2013 

Y Hwang: Network communities in the visibility graph 045: 8 

 

another is narrow. Without any complex analysis, we can say that room A and room B form 

almost one space, whereas room B and room C are quite separated. Convex partitioning ignores 

such an obvious difference between the two openings and yields three convex spaces (if wall 

thickness is ignored). 

The difference between the two openings becomes clearer when we construct a visibility graph 

on the floorplan in Figure 4. There are much more inter-edges passing the opening between A 

and B (total 311 edges) than inter-edges passing the opening between B and C (total 181 edges). 

Thus, modularity based partitioning prioritizes B-C cut to A-B cut, whereas no priority is possible 

to be given by convex partitioning.  

           

Figure 4: Floor with two thresholds 

Another noteworthy difference in modularity based decomposition is that it gives a 

decomposition based on the global property of a spatial network, while convex partition or 

e-partition uses only the local property of the space. For example, whether a space is convex or 

not has nothing to do with other parts of a floor. It can be determined only with local 

information. In contrast, modularity-based decomposition cannot be done without the 

knowledge of the whole network structure. For example, let’s assume that the rooms in Figure 4 

are only a part of a large floor. Then, whether there would be any partition inside A-B-C cannot 

be determined without information on other spaces connected to A-B-C. If there are plenty of 

good locations for ‘cuts’, then we would be less likely to have a partition within A-B-C. On the 

contrary, if outside spaces are all very well-connected, then we would be more likely to have a 

partition within A-B-C. 

 

VOS clustering technique 

Among many community detection algorithms proposed so far by network scientists, this paper 

uses VOS clustering technique (Van Eck and Waltman 2007) for finding communities in space. 

This is because the method can adjust ‘resolution’ of analysis, respects edge weights, and has 

reasonable computation cost. VOS technique has a slightly different form of quality function 

from Newman’s modularity Q in order to introduce a resolution parameter γ and the degree of 

association strength between nodes (edge weight). The quality function V of VOS technique is: 

 

                               

where sij denotes association strength between vertex i and j, which is given by 
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where kij denotes the number of edges between vertex i and j.  

It has been shown that the quality function V of VOS clustering technique is equivalent to 

Newman’s modularity Q when resolution parameter γ and edge weights are set to one 

(Waltman, van Eck, and Noyons 2010). 

3.3 Distance weight 

Panel (a) in Figure 5 shows a sample result of VOS partitioning (γ=0.4) applied to a typical floor 

with a corridor. We can see the upper rooms and the lower rooms are pairwisely interconnected. 

This is, although not desirable, but understandable result with the given visibility graph 

structure that connects any visible grid points equally no matter how near or far they are. In 

other words, the visibility graph does not contain information about the ‘locality’. Hence, a 

distant pair of points across the corridor can be grouped together because they are visually 

‘neighbors’ equally as a closely located pair of points within the same room.  This is not what 

we expected to get from floorplan decomposition.  

       
(a) No distance weight                    (b) Inversely distance weighted 

Figure 5: Comparison between no weight visibility graph and distance weighted visibility graph 

The problem can be solved by emphasizing the locality of a visibility graph. In other words, one 

way of to strengthen locality is to make ties between nearer points stronger and to make the 

ties between farther points weaker.  Thus, we give edge weights to the visibility graph 

according to the inverse of the distance between the two points. Panel (b) in Figure 6 is the 

result from the same algorithm with panel (a) except for the edge weights. It gives a set of 

partitions fit with our intuitive partitioning. 

3.4  Implementation 

We developed software for calculating and visualizing NCVG method. ArcPy, the official Python 

package for ArcGIS by ESRI was used for generating grid points, checking visibility, and 

visualizing the decomposition result. NetworkX, an open-source Python package for network 

analysis was used for general network operation such as constructing a visibility graph, giving 

edge weights, and exporting a graph. VOS clustering software by van Eck and Waltman was used 

for the calculation of VOS algorithm. Python was used for a ‘glue’ language combining these 

components.  

The software gets shapefiles of a floor’s boundary and internal walls as inputs. Then it builds a 

weighted visibility graph and determines groups of nodes in the visibility graph according to the 
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given resolution γ. The outputs are a shapefile containing grid points with partition information 

and an image file visualizing the partitions. 

4. Discussion 

4.1 Revisiting the three floors 

Figure 6 shows a result obtained by applying NCVG method (γ =0.4) to the three floorplans 

previously shown in Figure 2. Floor A with a curved wall is decomposed into four subspaces 

being separated at “bottleneck” locations. Floor B with seven free standing columns is 

successfully separated into three subspaces. In floor C, the algorithm ignores small indents in 

each room and identifies two rooms following the designer’s intent. 

                 

Figure 6: Application of NCVG to the three previous floors 

One might ask, “Can we have more (or less) divisions for Floor A?” Or, “The upper part of Floor B 

is separated by five columns, while the lower is separated only by two columns. Should we have 

to treat them equally?” Or, “What would happen if the indents in Floor C become larger? Do we 

still have two subspaces?” These questions are closely related to the effect of resolution 

parameter.   

4.2  Effect of resolution 

One of the major advantages of NCVG method is that we can control the resolution of analysis. 

For example, if we need to conduct a fine-grained analysis of a floor, we would use a higher 

resolution parameter that identifies more groups. Let’s look at an exemplar floorplan. How 

many subspaces would you expect to see from the floor (a) in Figure 7?  
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Figure 7: Increased number of subspaces as resolution increases 

The panels from (a) to (e) in Figure 7 show how subspaces are differentiated by the level of 

resolution. If a researcher wants to see a big picture or to identify the most critical ‘cuts’, he or 

she would set the resolution low enough and get two subspaces as in Figure 7-(b), saying, 

“What is important in this spatial structure is the long bottleneck in the left part, and we should 

ignore the trivial indents in the right part.” Or, he or she would choose panel (e) if he or she 

thinks, “There are three rooms and two connectors in this space. They are all independent 

spaces and I’d like to see them all.” 

Going back to Figure 6, we can predict how the three floors will be decomposed as resolution 

changes. For floor A, we will have more divisions as the resolution parameter increases. Floor B 

will have only one subspace with very low resolution. As the resolution parameter increases, the 

upper part of Floor B will be identified firstly and then the lower part will be also identified. The 

small indents in Floor C will be ignored when the resolution parameter is small. However, when 

resolution increases or the size of indents becomes larger, the floor will be divided into more 

than two subspaces because the indents are not to be ignored.     

4.3  Hierarchical spatial structure 

One useful aspect of the series of decomposition with changing resolution is to reveal 

underlying spatial structure. Figure 8 shows the series of spatial differentiations from a 

simplified Miesian house. With a low resolution parameter (γ =0.10), the floor is divided into the 

three subspaces: MNOP – QR – STU. As the resolution γ increases to 0.30, the largest part 

MNOP is differentiated into three subspaces M-OP-N. At γ = 0.40, STU cluster is divided into S 

and TU. At γ = 0.80, OP is divided into two subspaces, O and P. At γ =1.20, Q becomes 

independent from R. Finally, T and U is differentiated at γ =1.40.  
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Figure 8: Differentiation of Space 

The differentiation process is summarized as a dendrogram in Figure 8. The dendrogram gives a 

picture on the hierarchical spatial structure of the floor, which is not easily captured in the 

traditional graph representation of floorplan. Space S is adjacent both to N and TU; however, 

S-N connection and S-TU connection are not equal. S is more closely related to TU than N in that 

S-TU is merged together earlier than S-N. Likewise, space P that is adjacent both to N and O is 

merged first with O and then merged with N, which means P-O connection is stronger than P-N 

connection.   

5. Conclusion: limitations and further work 

In this paper, we present a new method for the decomposition of space requiring no ad-hoc 

rules and relatively free from an operator’s arbitrariness. Unlike traditional methods, this 

method decomposes space based on the global property of a spatial network by adopting 

modularity function as a quality function of decomposition. Also, VOS technique used for this 

method enables researchers to adjust the level of analytic resolution. This gives much more 

flexibility in the analysis of space. Also, this method provides an analytic tool for exploring 

spatial hierarchy by the examination of the series of spatial differentiations.  

Although this paper provides an interesting way of spatial decomposition, much work is still 

required. First of all, it will be interesting if the result of the decomposition using this method is 

compared to human recognition of space or actual space utilization. Secondly, a dedicated 

algorithm for community detection in spatial network may need to be developed. Currently we 

are using VOS algorithm developed originally for citation network, not for spatial network. We 

may expect better performance and more control on the community detection process if we 

have a tailored algorithm for spatial network. Thirdly, applying this method to three dimensional 

space might be interesting. One of the strength of this method is that this method can be 

expanded to three dimensional environment with almost no additional effort once three 
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dimensional visibility graph is given. 

Finally, we may explore the possibility of applying community detection techniques to spatial 

networks other than visibility graphs.  For example, we may apply community detection 

techniques to the road network of a city in order to identify ‘natural’ urban tissues of the city 

and to explore how such urban tissues are well or poorly matched to actual urban behaviors. 

Also, we may apply the techniques to the convex map of a large building complex to identify 

well-clustered parts of the building complex. 
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