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ABSTRACT 

Until recently, the application of Space Syntax on design was predominantly limited to 

evaluation at a post-design or pre-design stage. For the model to engage in the conceptual 

development and synthesis of design there is a need to find a mechanism by which an analytical 

description of urban complexity could be translated into a synthetic description. For this purpose 

and in an attempt to find a plausible description for such mechanism, empirical models of space, 

form and function are devised in the course of design generation through the use of generative 

and nonparametric techniques. Generative growth algorithms were applied to evolve different 

street network structures. The structures were measured against existing urban networks to find 

the best performing growth iteration. The winning iteration was then used to derive 

form-function attributes for an urban area. A neural network model is trained on real data to 

predict target spaces given the configurations of street networks. Following this sequential 

modelling procedures, a description of the organised complexity of cities is retrieved from 

empirical models and reconstructed in a design experiment. This process serves as to support 

design decisions when tackling the complexity of large scale urban interventions.  

Keywords: Design Synthesis, generative urban design, Neural Networks, Complex systems, 

GeoComputation, Space Syntax 

Theme: Architectural Design and Practice 
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INTRODUCTION 

In recent times, studies that explored urban design were witnessing a divide between research 

and practice. Research-based approaches build on analytical methodologies to construct 

explanatory models of urban phenomena. Practice-based approaches are explorative and 

assumption-based. Any attempts to bridge the research and practice were faced by non-trivial 

challenges. On the side of scientific research, rigour is much emphasised without regards to the 

uncertainty and ambiguity inherent in design as a human cognitive activity. On the side of 

design practice, creativity is at the essence of any design process and scientific reasoning comes 

only as to post-rationalize aesthetically-driven decisions. The problems that result from 

diverting towards one approach without considering the other have significant implications on 

the quality of future urban life. The dilemma that is present in both approaches triggers 

questions of the type; why do we need science in design? Can science provide more definitive 

answers to design and if so is knowledge-based design counter-creative? How does it play role 

in informing or restraining creativity? What type of mechanism is needed to convert an 

explanatory reading of architectural phenomena into a synthetic and yet creative design 

approach?  

These questions deal with many terms that are in themselves subject to a broad spectrum of 

research in both sciences and arts. A term like creativity -for example- has been historically 

challenged in artificial intelligence (Boden, 1990), when creativity might simply be seen as the 

new, the aesthetically spectacular. The multiple definitions for such basic terms would clearly 

mystify the language of communication between sciences and arts. This makes the unpacking of 

our abovementioned questions a very challenging mission. The adaptation of complexity to 

serve in design reasoning for example requires a careful understanding of the complex 

composition that makes the built environment and how such composition can be rebuilt 

through a linear design process.  

Due to the complexity intertwining urban systems, there is a need to frame the problem 

definition of cities before even tackling the problem of design (Alexiou et. al., 2010). On the 

problem definition strand, research on the science of cities comprises a long history that 

spreads over the last century with the quantitative element becoming particularly more visible 

over the last three decades. One of the first calls for thinking systems in cities was that of Jane 

Jacobs (1964), where she made the assertion that cities similar to biological systems are matters 

of organised complexity. That call has paved the way for understanding cities as complex 

systems. Since then, engineering and scientific modelling approaches continued to shape the 

landscape of this discipline. Theoretical frameworks, such as that of Space Syntax, took an 

analytical stance with focus on the network structure of space and the social logic inherent in its 

representation (Hillier & Hanson, 1984). Others were more concerned by the patterns 

embedded in urban raster images (Ratti & Richens, 1999). With a focus on modelling, biologists 

and geographers have exchanged roles, looking for allometric scaling laws in urban systems 

(Bettencourtet. al., 2007), (Batty et. al., 2008).  

Whether in urban design or simulation modelling, practice-based approaches were on a 

divergent path, aiming to explore the making of cities. In their practices, urban designers were 

clearly occupying the front of decision making. Due to the practicality of their work and 

limitations in time and resources, decisions were often made in direct response to problems on 

site relying mostly on professional expertise.  

On the computational modelling strand, different scientific theories and models were adapted 

to support urban planning (Wu & Silva, 2009). Computational systems were mostly developed 
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on the basis of building block as the elementary component of urban models. With few 

exceptions (Duarte et. al., 2007), most of these systems were based on assumptions with not 

much account of actual urban patterns. Modelling approaches were mostly dedicated to 

simulate cities. Methodologies varied depending on the computational models used (Parish and 

Müller, 2001), (Stanilov, 2003), (Batty, 2005).  

Due to the complexity of the field, studying cities as physical artefacts, as processes and as hubs 

for economic and social life was handled differently across these domains. In general, any 

focused methodologies faced non-trivial challenges (Webster, 2008). Some theorists took a 

sceptical position claiming that universal models ignore singularities, human experiences and 

often falling in the trap of scientific reduction (Vesely, 2004). Dispute on the validity of 

representation, the capacity of static descriptions to explain processes and the notion of spatial 

determinism were particularly posed against Space Syntax (Ratti, 2004). Difficulties in isolating 

variables and ruling out dependencies and interdependencies were at the core of criticism 

against any simplifying modelling approaches. Along with all that comes also the questionable 

usefulness of any assumption-based simulation approach. The adaptation of computational 

models to explain and simulate cities was mostly based on agglomerations of urban blocks. In 

that there is a clear disregard to street networks as arteries for commuting from all origins to all 

destinations. Attempts were made to grow streets rather than blocks (Parish & Müller, 2001). 

However, the mechanism used was predominantly based on repetition and subdivision in the 

street elements without accounting for the network properties of the generated grid. Moreover, 

the mechanism of such hierarchical models did not comply with the suggested lattice-like 

nature of cities (Alexander, 1965). Uncertainty continued to be a major issue in urban simulation 

models where estimates on population density play an important role in setting assumptions. 

The focus in all these modelling approaches was on producing city-like physical features without 

making it clear how actual historical growth patterns and form-function relationships inform 

modelling. This particular problem demands careful considerations for what makes the 

emergent social and economic behaviour that shapes cities complexity to avoid alienating 

computational models from real urban life. Of interest, is how to evolve urban form in such a 

way as to build on the analytical and explanatory descriptions of urban growth, an idea that 

follows Alexander’s early work on analysis-synthesis in design (1964) and is more recently raised 

by Penn (2006).   

In an approach to embrace design in the study of urban complexity, the aim of this paper is to 

present a synthetic description of the organized complexity of cities. For this purpose, a 

knowledge-based model is devised to aid urban design decisions. The model proposed outlines 

a prioritized structure of design thinking. Prioritization is assigned following observations on the 

historical dynamics of urban form and function where space is seen to trigger economic activity 

and its associated formal manifestations. The empirical models outlined will enable the 

generation and evaluation of spatial structures. Additionally, the models will enable the 

prediction of form-function attributes. Creative variations on the outcome of this constrained 

process would test the application of science on design. In exploring the boundaries of 

rationalitybetween empirical knowledge and human creativity (Simon, 1957), there is the 

questioning of the validity of a structured approach in maximizing certainty about design 

decisions and in reducing constraints over creativity.  

A PRIORITIZED STRUCTURE MODEL FOR URBAN DESIGN  

Given the apparent complexity in urban systems, a structured approach is seen to be inevitable 

in response to the challenges posed in urban design. In essence, any structuring should be 
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based on a prioritization model that gives preference for certain variables over others. For the 

model to be substantiated, it needs to be based on the fundamental functioning mechanisms of 

cities. A theoretical proposition on such prioritization needs to take into account the generic 

function of movement that is much valued in Space Syntax as the engine that energizes cities 

and drives their movement economies (Hillier and Penn, 1996a). Following Hillier’s proposition 

for a design filtering model (Hillier, 1996), the generic function is a priority condition that makes 

spatial structures accessible. Hillier further identified a second and third design filters that are 

predominantly based on qualitative criteria. These criteria were determined by individual or 

communal cultural identity. According to Hillier, the first design filter can be approached by a 

set of ‘discursive techniques’ to minimize depth hence conserve on through-movement in an 

urban system. This model remained theoretical in essence, when design approaches utilized 

Space Syntax as an evaluative tool to reason about design decisions (Karimi et. al., 2007).  

 

 

Figure 1: A prioritised structure model for urban design consisting of three main design filters. The first is determined by 
spatial laws of growth and generation. The second is a function of the relationship between space and form-function 
data. The third is refined by other non-spatially determined quantitative criteria (i.e. environmental measures). The 
fourth is purely subject to designers’ internal logic of reasoning and qualitative choice. 

For further engagement of Space Syntax in the making of design solutions, the model could be 

further adapted to serve in synthesizing designs. In that, space is hypothetically considered as a 

predictor of form-function. To adapt a synthetic description of Space Syntax, the prioritized 

structure proposed here–and discussed more extensively in (Al-Sayed, 2014a)-lists four sets of 

design filters (see figure 1). The first set defines the generative laws of urban space; here 

represented by segmental street networks. These laws were extracted from the historical 

evolution of urban form. The second set of filters depends on the first set to estimate 
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form-function attributes from the temporal state of the spatial structure. The third set of design 

filters is not directly related to space but is determined by other types of quantitative criteria 

such as environmental and lighting measures. The fourth set of design filters are then 

qualitatively determined by designers or users to further shape design solutions. Given foreseen 

difficulties in fully automating a design process, it is inevitable for a designer to intervene in 

tuning data and selecting applicable evaluation measures. For that, it is suggested that while the 

first three design filters can be reasonably applied in separate stages, the designer’s role will be 

gradually necessitated throughout the process as to further shape design features.  

URBAN DESIGN EXPERIMENT  

To explore the application of the prioritized structure model in urban design, an experimental 

approach will be followed. The process will involve generating a hypothetical urban grid and 

defining form-function attributes. This will be enabled by building a knowledge-base to evaluate 

generative spatial structures and to encode empirical data into non-linear predictive models. 

While the next two sections will be dedicated to outline this approach, the section that follows 

will explore creative variations on the predicted outcome of modelling. In exploring the 

boundaries of certainty and uncertainty, the experiment is set to unveil the role of designers in 

adapting knowledge to explore new forms of creativity. 

Generative variations and the geometric filter 

In search for local rules of growth in urban form, early Space Syntax experiments (Hillier & 

Hanson, 1984) presented a generative pattern of organization on the local scale of an urban 

area. The experiments have further led to the realization that longer lines tend to continue 

straight and shorter lines stop earlier to form near-right angles (Hillier, 2002). The process was 

identified as the centrality and extension rule. This simple rule can be implemented here as to 

govern the generative growth mechanism while allowing for a margin of randomness in the 

growth patterns (see table 1). The structures produced present varying syntactic properties. The 

syntactic properties can be either defined as the topological configurations of an axial map or 

the geometric configurations of a segment map. An axial map is a scale-free representation of 

the longest and fewest lines in a street network. The segment map is a broken description of 

the axial representation where each segment element between two street inter-junctions is 

considered as a separate element in the network. The segment network is based on geometric 

properties of angular turns between each segment and the other (Turner, 2000). To judge the 

urbanity of the generated structures, four invariants that were extracted from mapping 

historical growth in previous studies will be considered as criteria for urban pattern recognition; 

1. The shortest angular path in the system renders out as a semi-continuous set of long lines. 

2. Self-organisational behaviour leads to the formation of certain side-effects, where patches of 

dense structures distribute leaving similar distances in-between.  

3. Local and global depth fits a log normal distribution. The distribution differs from that of 

random networks in that it shows a higher degree of skewness (asymmetry). 

4. Urban axial systems exhibit high intelligibility and synergy1 between the local and global. 

                                                      
1 R2 coefficient between axial integration Radius 2 and global axial integration 
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The first three invariants were identified in (Al-Sayed et. al., 2010), (Al-Sayed et. al., 2012), 

(Al-Sayed&Turner, 2012), (Al-Sayed, 2013). The fourth invariant was observed by Conroy Dalton 

(2001). What is yet to be investigated is whether these invariants can be a natural product of a 

local generative rule. 

 

 

Table 1: Evaluating the four growth iterations against the spatial properties of Barcelona and a randomly generated 
structure. The generative code is written in Processing (Java). Spatial Structures are analysed using UCL Depthmap 
(Turner, 2011). 

After generating four growth iterations, the structures were evaluated considering the above 

mentioned invariants and compared to an urban region in Barcelona and a randomly generated 

system. To evaluate against invariant 1, choice [SLW], a segment length weighted measure of 

the shortest angular paths across the whole street network, is calculated. A structure that has 

the highest 10% values is then extracted and evaluated. The structure’s continuity is evaluated 

by measuring its normalized cumulative total depth values. Total depth is also an angular-based 

measure based on the sum of angular turns taken to reach any segment element in the system. 

A normalised reciprocal of this measure defined as segmental integration can help estimating 
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the potentials for a street segment to be a destination in the urban system.  

To evaluate against invariant 2, metric mean depth analysis (MMD) is calculated. The measure 

here simply represents average physical distance from each street segment to the neighbouring 

segments within a metric radius of 1000 metres (Hillier et. al., 2007). Relating to invariant 3, the 

distribution of angular integration is evaluated through measuring the goodness of fit KSL test to 

check whether the values of angular integration follow a log normal distribution. In addition, 

the degree of skewness is compared to random and real systems. Skewness is a statistical 

moment that measures asymmetry in the distribution of values. Considering invariant 4, the R2 

coefficients of axial intelligibility are compared. Intelligibility is an axial graph measure that 

represents the relationship between streets that have high connections to other streets 

(connectivity) and streets that are more integrated in an axial system. 

The evaluation measure of choice indicates that iteration 3 performs better than iterations 1, 2 

and 4 (table 1). Calculating MMD for different radii does not identify clear patchwork patterns in 

the background network of any of the three variations. This measure needs to be calculated for 

larger systems to verify this result. Judging on KSL test, iteration 3 fits best with normal 

distribution, it also presents an indicator to a well differentiated structure (Skewness=-1.46). 

Considering the part-whole structural unity, the structure of iteration 3 is more intelligible than 

other iterations and reasonably similar in terms of synergy values. Yet, all three iterations 

present less competitive structures when compared to the deformed grid of Barcelona or even 

to a random system. Considering these findings, iteration 3 prevails as it presents an optimum 

foreground structure that conserves physical distance and angular turn costs. It also presents a 

structural differentiation that approximates actual urban structures. On aggregate, the angular 

depth in iteration 3 fits to a log normal distribution. The distribution exhibits a degree of 

asymmetry. Iteration 3 also presents a relatively more intelligible structure than other iterations. 

Despite the relative success of iteration 3, it still fails to be close to the configurational 

properties of a real urban structure. However, it does perform relatively better than other 

iterations. These results qualify iteration 3 for the second stage in the design experiment.  

Nonparametric modelling of space-form-function  

In this section, a nonparametric model will be applied using a soft computing technique based 

on Artificial Neural Networks (ANNs). Due to its robustness, nonparametric modelling was 

favoured over parametric modelling. The use of ANNs in modeling would enable a more 

plausible encoding of the data and the functioning mechanism that captures space, form and 

function relationships in cities. The ANNs allow for minimizing assumptions about the input and 

output data distribution and the type of data used, whether continuous, categorical, or binary. 

They are particularly useful in cases where complexity in the system relationships and 

imprecision in observations are issues that threaten the credibility of simpler models. This is 

particularly useful for urban data provided the foreseen difficulty in matching different 

categorizations of land uses -for example- for different cities and different planning systems. 

ANNs are also fault-tolerant towards redundant information coding, where there are hidden 

relationships between spatial measures or between socioeconomic variables. In addition, the 

application of nonparametric ANNs models was seen to simplify the course of design by 

resorting to one functioning description rather than many. 

Artificial neural networks (ANNs) consist of layers and neurons that simulate human learning. 

The training of ANNs can help storing embedded functions that might be used to categorize 

information and provide projections given new situations. With such functionality, ANNs can be 

used to answer what if questions and generalize complex relationships on presumably similar 
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situations to the situation used in the training. ANNs are used in many fields; including medical 

sciences, engineering, AI …etc. They are also known to be successful in the non-linear mapping 

and modeling in geography (Openshaw & Openshaw 1997; Openshaw, 1998; Wang, 1994; Zhou 

& Civco, 1996), (Li & Yeh, 2002). The downside in using ANNs is in the difficulty to describe the 

relationship between the input variables and the output variables. All the training takes place 

within a black box where it is not possible to identify the functional form of the response 

surface. Rather than the direct path from the X variables to the Y variables, which is the case of 

regular Regression, the neural networks incorporate intermediate layers. 

Neural networks comprise a large class of different model architectures. Traditionally the ANNs 

are used to classify a set of observations. In most cases, the issue is in approximating a static 

nonlinear, mapping ƒ(x) with a neural network ƒ(x)NN, where x∈RK. The ANNs model to be used 

in training space and form-function data in this section will consist of three layers, the input, 

output and a layer with hidden nodes in-between. The different layers are encoded in the 

multilayer-perceptron (MLP) model illustrated in (Figure 2). Three hidden nodes are considered 

in the middle layer, where activation functions that store weights and biases are embedded.The 

Artificial Neural Networks (ANNs) will be fully connected and will use a feed-forward mechanism. 

The network is fully connected since the output from each input and hidden neuron is 

distributed to all of the neurons in the following layer. The Feed forward mechanism of the 

model entails that the values would only move in the forward direction from input to hidden to 

output layers; so that no values are fed backwards to input or hidden layers. Due to the limited 

number of inputs (3) and outputs (4) and a fair amount of redundancy (correlation) between 

two spatial measures in the input layer, we chose simple network architecture using standard 

nonlinear least-squares regression methods.  

 

Figure 2: A neural network model applied to Barcelona, using normalized spatial measures of choice, integration and 
connectivity as factors and form-function attributes as response variables. 

To enable the decoding and encoding of urban form-function relationships, the pixelmapper 

method was used (Al-Sayed, 2012). The pixelmapper was devised in mapping form-function 

variables against spatial configurations. Data was binned in two overlapping polygon layers and 

was further projected against a third polygon layer with higher resolution to preserve the 

accuracy of representation (see figure 3). The pixelmapper was first used in binning 

space-form-function data for the two urban regions under study. It was then adapted to serve in 

the context of design.  
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Figure 3: Binning data for correlations; storing data and spatial configurations in two overlapping grid reference layers 
and selecting the highest values in a third higher-resolution reference layer. 

To explore the application of a nonparametric ANNs model in urban design, we reused 

activation functions that were previously trained and validated on the case of Barcelona and 

tested on Manhattan’s urban structure (Al-Sayed, 2014b). We then used the learning functions 

to forecast a 2D target space for form-function attributes given the winning growth iteration 

obtained in the previous section. Geometric measures of street network configurations were 

given a priority role in defining form-function attributes. Form attributes included building 

height and density as well as street width. Functional attributes defined the relationship 

between spatial structure and the overall commercial zoning of the associated areas.  

For the input layer, three spatial measures were used as factors, namely; normalised choice 

[Segment length weighted] (NACHslw), normalised integration (NAIN) and aggregate 

connectivity per 1000 square unit (Connectivity1000). All measures were computed using UCL 

Depthmap software (Turner, 2011). NACHslw is an angular measure of graph betweenness that 

is both normalised and weighted by street segment length. Choice in segment analysis 

calculates the shortest putative paths across the street network (Turner, 2000). NAIN is a 

normalised and angular-weighted measure of a graph’s closeness. The normalisation follows a 

recently invented method that weights the effort made by shortening journeys by the cost in 

total angular depth in the spatial network (Hillier et. al., 2012). Connectivity is equivalent to 

degree in graph theory. It is here summed up for every 1000metre square unit of a pixelmapper 

layer. Both NACHslw and NAIN can be limited to a certain metric radius that can define their 

graph neighbourhood. Here we use the full radius of the two measures that is radius n covering 

all nodes in the graph. Before using the continuous variables as input in the ANNs model, their 

values were to be normalized to avoid the effect of different network sizes. For the 

normalisation, a lognormal probability function was used to map the values to the range [0, 1]. 

The dependent responses are a mix of continuous variables running in regression mode (Block 

density per 1000 metric square) and ordinal variables running in machine mode (commercial 

activity, street width above 30 meters, high rise above 35 meters). The positive presence of the 

ordinal response variables was marked as 1 and the negative presence is 0. 

Forecasting form-function attributes for the winning growth iteration 

The ANNs model extensively discussed in (Al-Sayed, 2014b), was found to be effective at 

predicting form-function variables for a given spatial structure. The pixelmapper method used in 

mapping empirical data was reused here to define the approximate features of the urban space. 

The attributes of the solution space were then defined within that resolution level (figure 4). 

The street width response was estimated directly from the NACHslw values and further 

informed by the ANNs predictions. The rest of the estimated attributes were fully automated 

assuming a full correspondence between the spatial measures and the response variables. The 

automation was subject to the accuracy of the ANNs model and the scale of representation. To 

produce a smooth representation of the target spaces, positive values (1) for ordinal responses 

were replaced by their correspondent probabilities.  
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Figure 4: Responses for form-function estimated by applying the trained and validated ANN model. The spatial network 
measures of iteration 3 were used as factors in the ANNs.  

CONCLUSIONS  

The design approach presented here builds on a theoretical model and a design experiment 

established in (Al-Sayed, 2012) and more extensively discussed in (Al-Sayed, 2014a). The 

theoretical model was based on the preferential role of space in defining urban form and 

function. Other quantitative and qualitative criteria were assumed to come at later design 

stages to further shape the features of design solutions. In our design approach, three filtering 

processes were followed to explore the application of the theoretical prioritization model on 

design. The first set of design filters were applied to recognise the urbanity of a generative 

network structure. Four growth iterations were evaluated and compared to a random system 

and a section of Barcelona’s grid structure. The evaluation helped selecting a growth iteration 

that successfully reproduced the spatial properties witnessed in real cities. The generative 

process was fully automated. Yet, the evaluation revealed few shortcomings that were either 

related to faulty evaluation or to the directional growth mechanisms implemented. Some 

shortcomings stemmed out of the difficulty to automate a recognition system for certain spatial 

measures, particularly those related to the definition of clusters. In what concerns generative 

growth, it was seen that any improvement on the model performance would necessarily require 

plausible negative and positive feedback mechanisms to be considered.  

The second set of design filters used in the prioritization model entailed the utilisation of 

another knowledge-based model. An estimated description of urban form-function was defined 

using a feed-forward neural network mechanism. Considering space as a predictor of urban 

form and function, the model was trained, validated and tested on empirical data from 

Barcelona and Manhattan. The data was mapped using a spatial aggregation technique called 

the pixelmapper. Accordingly, a system-based design model was devised using the ANNs model 

that defined a relationship between street network measures and data on form-function 

(Al-Sayed, 2014b). The ANNs model was fully automated to estimate the formal and functional 

attributes of the generated iteration. The approach was intended to establish a city-to-city 

supervised learning approach where a model is trained on a data set, validated on a different 

data set and devised to forecast formal and functional attributes for a hypothetical urban grid. 

The third design filter was not utilised here as it required an interdisciplinary account on other 

quantitative measures. 
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This work presents a structured procedural approach to urban design considering a set of 

prioritisations, where, a functioning space is given the preference to ensure a sustainable design 

outcome. In evaluating, decoding and encoding urban systems the intention was to adapt 

designs to reflect on the natural organised complexity that cities evolve and enforce despite 

planning interventions. The adaptation of the resultant descriptions to design is not thought to 

restrain creative explorations.  

It is concluded that despite attempts to present knowledge as a solid product of pure rationality, 

in practice; scientific knowledge is often subject to the constructs of representations and 

measurements. This should not avert designers from acquiring scientific knowledge or deter 

scientists from exploring creative synthesis of analytical descriptions. By exchanging roles, both 

scientists and designers could explore new creative dimensionalities of science. Empirical 

knowledge acts as to ascertain the first steps towards modelling urban problems, yet it presents 

no determinism over the subsequent course of design actions. It is at the essence of this 

investigation that whilst knowledge comes as to support design reasoning – particularly in what 

concerns unravelling urban complexity-, it does not frame designers’ creativity.  
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